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QUATERNARY CYCLIC CODES 

by 

G. Solomon 

ABSTRACT 

We consider cyclic codes for the quaternary alphabet, the field 

K = GF(2  ).    If  A   is a (k.n) (n odd) quaternary group codes - i.e. , a k- 

dimensional subspace of ordered n-tuples of   K   elements - then  A is 

isomorphic via the Solomon-Mattson polynomials, to a subgroup of the 

direct product of   K   with   r   copies of   L.    (L   is the smallest field over 

K   containing the n     roots of unity and   r   is the number of irreducible 

factors of   x   + l/x + 1   over   K.) 

Let   d{A,K)   be the minimum weight of non-zero vectors of   A. 

For   p, a prime, and   A, a (k,p) cyclic   K   code, d(A,K) ^dCA.F)   where 

d(A,F) is the Bose-Chaudhuri bound for the corresponding binary cyclic 

codes of the same order (if there is one).    Number theoretic methods are 

introduced to improve the Zierler-Gorenstein lower bound for certain 

primes   p.    For   p   suchthat   2 has multiplicative order   p-1, there exists 

(p  +l/2, p) cyclic codes with   d(p) 2=3   if 3 is not a quadratic residue of 

p,    d(p) a 4   if 3 is a quadratic residue of   p, and d^ 5   if both 3 and 5 are 

quadratic residues of   p. 

GSrjj 



I.    Introduction 

In this report we consider cyclic codes for the special alphabet 

of 2    symbols.    Interest in coding for this particular alphabet arose 

from private discussions with Dr. Robert Price.    The work of M. Golay* 

ih the penny-weighing problem gives general results for alphabet of 

pm   symbols.   In addition,   Zierler and Gorenstein'5' have formulated 

decoding procedures for cyclic codes using   pm   symbols.    We apply 

the methods of (2) and (3) to treat the special case.    We improve the 

previous error correcting estimates and indicate how number-theoretic 

properties of p-r-imes enter in the general problem.    The results are 

easily analogized to   p2   symbol alphabets and from there generalizable 

to   pm   symbols. 

II.    Preliminaries 

The alphabet we wish to encode shall be elements of the field 

K = GF(22)   of degree   2   over   F ; the field of two elements.    K   con- 

tains the elements   0,   1, a,  er2   subject to addition modulo 2 and the 

rule   a    + a + I =  0.    We are interested in linear mappings of   V. (K) 

into   V  (K)   for n odd.    These are the   (k, n)   group codes.    We shall 

consider here a subclass of these codes which are generated by linear 

recursion.    We derive the general error-correcting properties for 

these codes and give algorithms for particular   (p)   to improve the 

general estimates. 

Let   a =  (a0,  aj,   .   .   .  a     , )   be a vector of   Vn(K) .    Following 

(2),   (3) we associate a polynomial of degree less than or equal   (n-1)   to 

the vector   a ,  such that   ga0
1) =  ^   where   ß   is a fixed primitive 

generator of the n1*1 roots of unity.    Corresponding to   a = (0,   ...   0) 

n-1 
we put   g   (x) = 0 .    Putting   ga(x) =     2     cj x1   and using   ga(ß )  f.   K 

a i=0 

for   i=0,   1,   .   .   .,  n-1,  we obtain the condition that 

g   (x)4 =  g   (x)   for   x =  J31     i - 0.   1,   ...  n-1 
a a 

which yields 



(Z ci xi )4 =  (L Ci x1) • 

Reducing the powers of  x   modulo n gives us conditions on the   C: 

co4  " co:   c4i = ci4        ls i s n-l 

The constants are now partitioned into mutually disjoint classes. 

Thus the polynomial   g_(x)   has in reality very few independent constants. 

Those are   c0, Cj,  04,  ci2,  .  .  .  cj where   Cj   is the coefficient of 

B ; «a.   is the coefficient of   x ^   where   ij   is the smallest integer such 

that   ii #  48 (modulo n) for any   s; i^   is the smallest integer larger than 

ii    such that   i? f  4s   or   i^ j 4   ^ modulo n and so on. 

The polynomial   g.(x)   can therefore be written as 
tit 

, v 4   4  ,       4*2    16 g(x) =c0 + c,x+c.    x    +c.      x      ... 

ll.        4    4il C.       X +   Ci X +   .    .    . 
l| M 

i2 4    4l2 
Ci2X iz    X        + '   '   • 

i     1 /i    4i     . r-1  _. 4        r-1   . 
C; X +   C; x +   .    .    . 
'r-l 'r-l 

The coefficients   c-    can also be given by the Reed formula 

n-1 

n-1 
c^     S       aß"1 

1        i=0       ' 
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n-1 .   -k 
ck=     Z       a. (/3l) 

K       i=0        l 

»2 Thus   c0   is in   K = GF(2£)   and the   ck   are contained in the smallest 

field   L   over   K  containing the nth roots of unity.    This also follows 

from the conditions   c^. = c.    . 

Thus to every code word   a 6   vn(K)   is associated a unique* 

set of   (r(n) ♦ 1)   constants   (c0.  c.,  c:  ,  • • • «|       ) .    This cor- 

respondence is linearly additive (3).    In particular, to every subgroup 

Vk(K)   of   Vn(K)   is associated a subgroup   G   of the direct product of 

K  with   r   copies of   L.    Actually   Vn(K)   is the direct product of 

fields   K x Lj  * 1*2 •  •  • x Lr   where   L-   is a subfield (proper or 

improper) of   L   and the degree   (L/Lj) ■ order of   i-   modulo n .    If 

n   is a prime, the   IM ■ L   all  j   and   G   for   Vn(K) = K x Lr .    For 

example, n = 9   G9(K) fit   G=KxLxLxKxK,  deg   (L/K) =  3 . 

For   n = 5   G = K x L2, deg   (L/K) = 2.*** 

We are concerned with the number   r(n) + 1   of independent 

constants at our disposal.    The alphabet   K = GF(22)   is algebraically 

more fortunate than the alphabet    F**,  r(n)   for   F   is sometimes 1. 

We have,  however,  for our case 

Lemma 1:   For n odd,    r(n) i 2. 

Proof:    r(n)   =   1   implies that   4h =   1   modulo n has   h = n-1   as its 

smallest positive integer solution.    Since   2   is prime to odd   n   we 

must have that   2*^"' =   1    (modulo n) where   <f)(n)   is the (Euler) 

number of integers prime to   n.    For   n   odd,   <p(n)   is even (2m).    We 

have therefore   4m =   1   (modulo n) and   m  < n-1.    Thus   r(n)  s 2   q.e.d. 

There are thus non-trivial cyclic codes for every odd n.    In 

particular,  the map   (c0,  c,  0, 0,   .   .   .)   — g(c0,  c,  0,0;x   = ßl\ 

i = 0,   .  .  . n-1   gives us a cyclic code over   K   of dimension   (1 + s) 

*Note that this depends on the choice of   ß. 

**See (3). 

***A correction of an earlier oversight in(3) thanks to S. Shatz. 
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where   s = degree of   L/K  where   L   ia the smallest field over   K 

containing the nth roots of unity.    The codes we shall consider are 

obtained by setting any of the   cp   i ^ 0. equal to aero.    The groups 

of code words corresponding to this set (via   gü31)) are generated by 

linear recursive sequences associated with finite difference equations. 

Let   Vk(K)   be a subgroup of   Vn(K)   which correspond« to the 

set   (c0, cj, c« i Ci ,  .  .  . CJ       )   where at least one of the   Cj = 0. 

Then for   ß   a primitive n'n root of unity, we form the polynomial   f(x) 

over   K   in the following manner. 

k 
f(x)   =    n   fjM   =       Z^    d:   X1 

J 1=0    ■ 
■k 

i. 
where   fj(x)   is the irreducible polynomial over   K  with   /3 J ♦     as a 

root.    If   k   is the degree of  f(x)   then we associate to   f(x)   the dif- 

ference equation of order   k 

^n+k +dk-iyn+k-i +- • • diym
= 0 

The   dj   are in   K   and for any   k   initial values in   K  we obtain a 

sequence of elements in   K   of period   n.    There is then the natural 

mapping of   Vk{K)   into   "^(K)   arising by taking the sequence of length 

n   generated by any initial sequence of length   k.    This is a standard 

cyclic code over the alphabet   K. 

HI.    Error Correction Properties 

We define the weight   w(a)   of a vector   a   in   Vn(K)   as the 

number of non-zero coordinates of   a.    It is immediate that 

w(a + b)   -s    w(a) + w(b)   and   w(a) = 0   if and only if   a = 0 .    We may 

define a metric on   Vn(K)   by putting   d(a, b) = w(a + b).    As in the 

binary symbol case,    a; <k, n)   group code is said to be   r   error 

correcting if   d(0, a)   s 2r   +  1   for   a,   any non-zero vector.    Thus, 

the error correcting properties are given by the minimum weight   d 

of any non-zero   a,  i.e. , n minus the number of zero coordinates of the 

♦ij corresponds to   cj.-XQ 
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vector   a      Since to every vector of our imbedded space   V,    is 

associated a polynomial   ga(x), we need only look at the number of 

zeros of  ga(x)   on our multiplicative group of nth roots of unity to 
ascertain its weight. 

IV.   General Results 

Let n be odd and let f(x) e ^ x] (the ring of polynomials 
over K) divide xn 4 1. Let t be a primitive nth root of unity. We 
define 

Ejtj =    {e;  OSe <n . f(te ) = 0} 

Then if  f(x)   defines the recursion which imbeds   Vk(K)   into   V (K), 
the associated polynomials   ga(x)   have degree at most   m . the" 
largest integer in   E(t) .    Then we have 

d0 

Theorem 1;*    Let   ß       be the least positive power of  ß   which is a 
root of  f(x)   then   d 2= d    . 

Proof:   * 8uffice8 to prove that for some primitive nth root of unity   t . 

the set   E(t)   has n-d0 as maximum.    Then the number of zeros of 

ga(x)   is at most n-d0> so the weight of  a   is at least   n - (n-^ ) * d 

W^are given that   ß. ß2.   .   .   . ß 0 '      are not roots of  f(x) 

and that   ß (    is a root of   f(x).    It follows immediately that   E(t)   for 

£ = 0       does not contain   n-1. n-2,   .   .   . n - (d0 - 1)   but does 
contain   n - d0 .    This proof is from Mattson-SolomonU). 

We note that the set   EU)   which are the powers of   x   in   g  (x) 

contains   4e   modulo n if it contains   e.    If   E(t)   contains   Ze   moduTo n 

for every   e, then the polynomial   gjx)   has the same power of  x  as 
the   ga   for   K = F.    This holds if   2 = 48   modulo n or   2 = 228   or 

~ = 1   modulo n, i.e.,  2 has odd order modulo n.    For such   p, 

the bound on   d   one obtains without investigating the coefficients is the 

Bose-Chaudhuri bound for the binary cyclic code of the same dimension. 

Now where   2   does not have odd order, we get a very small 

general estimate of   d0, which we will improve here.    In particular 

♦This theorem for   K = F   was proven in a different form first by Bose- 
Chaudhur^    For   K = GF(P

m ),  the Galois field of   pm   elements    this 
was done by Zierler-Gorenstein. w——, tms 
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for   p 5 *3   (8) where   2   has order   p-1, we obtain   d 2: 3.   We can 

improve this for particular   p   of this type and indeed give a general 
algorithm. 

We now present two lemmas on polynomials which we shall 

need for error correcting properties. 

Lemma 2;   Let  g(x) = b    . x1*"1 + bm xm + .  . . b0   where 

bj €   F,   i = 0, ... p-1   and  bm bp.j f 0.   Then  g(x)   can have at 

most  m + 1   aeros on   Z, the group of pth roots of unity.   Translated 

into coding terms, if  g(x) = g1L(x)   of a vector   a, than   w(a)  s p - (m + 1). 

Proof;  Let   r   be the number of roots of  g(x) fjaj,  .  .   . ßr7 in   Z. 

Let   (Yj.   •  •  • 'Yp.r.i)   be the other roots of   g(x)   contained in some 

suitable extension field.    Let    Py  •  •  • ^'p-p      denote the elements 
of   Z  which are not roots of  g(x).    Denote by   sO.i),  sO», i), sC-y, i) 

respectively the sums of products of   (0, 0*,  y)   taken   i   at a time, 

(8(-,0) = 1) .    We have for the first   i s p-1 - (m + 1) values 

S 8()3,i)8 0'.j)  =        S 80,i)  8(Y,j)  =0 
i + j = i i + j = i 

since the appropriate coefficients in   xp +  1   and   g(x)   are both zero. 
It then follows that for   j s  i 

s^'.j) ■  8(Y,J) 

If   p-r < p-m-2,  sO'.p-r)   =  0   since   8(Y,p-r) =0 .  8(/3',p-r) = n ^,
1 . 

ß'     r = 0   gives us a contradiction.    Therefore   p-r a p-m-1   or 

r -s m +  |.    q.e.d. 

Lemma 3:   Let   g(x) = bp.2 x?-2 + bm xm  + .   .   . b0   where   bi e   F 

i = 0,  .  .   . p-2   and   bjj, bp_2 / 0   m ^ 1 .    Then for primes   p   where 
xP + 1/I + x   is irreducible over   F,    g{x)   can have at most   (m + 1) 

zeros on   Z.    (d ^ p - (m + 1). 
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fr.... *r}. ff.1. ... (.'„., j.^....^^ 
be as in Lemma 2. 

For   I «   (p.2) -   (m+1) . we have 

«     80.i)s01.Y)=      s       «O.i) .(Y,Y) = 0 
1 + J = « i + j = i 

and for  j -s i   it follows that   stf1, j) = 8(Y, j) . 

If  p-r-Sp-m-Z   or   p-r-l  s  p.m.3f    stf1. p-y-D'O   since 

»(Y. p-r-l) =0   but   sO1,  p-r-l)   is the sum of   (p-r)   thingstaken 
(p-r-l) at a time. 

If  p-r s  p-l. i.e.,  r > 1,  this is imposible since   xP +  l/l + x   is 
irreducible so we get contradiction.    So 

p-r    2p-m-l 

r -s m + 1      q. e. d. 

Theorem 1:   For   p   a prime where 2 has multiplicative order   o-1 

there exist   ( C-J—   , p)   cyclic quaternary codes which correct at 
least one error. 

The desired codes shall be vectors of the form     ga^i)     where 

ga(x)   is parametrized by a pair of constants    (c0, c)   (c    e   K, 
c e   GF(2P     ) ).    0   a primitive pth root of unity     The choice of the   g 

will depend upon the particular   p   and will exhibit the error correcting 

properties immediately.    The   g's   chosen will be either of the type 

in Lemma 2 or Lemma 3.    The lower bound   d0   obtained will depend 

clearly on the integer   m   since for both Lemmas 2 and 3   d i:p.(m + l). 

For particular   p .  we would like a general algorithm for the value of 

m.    It is in the nature of these particular   p ,  that we may use the 

theory of quadratic residues to make simple decisions as to which set 



-9- 

of  g   to choose and what value of  m   occur«.   We therefore make a 

necessary aside and include the appropriate data. 

We introduce the Legend re* symbol   ( * )   for   a » 0.   If 

x    = a  modulo p has solutions in the field of p  elements,   GF(p), 

we say that   a   is a quadratic residue of  p.   Symbolically   (*)«+!. 

If  a   is not a quadratic residue of  p  we write   ( * ) = -1 . 

For primes   p   where 2 has multiplicative order  p-1, i.e., 

2 is a primitive generator of the multiplicative group of  GF(p) , the 

statement that   a e   GF(p)   is a power of 4 modulo p translates 

equivalently into   ( * ) =   +1   and vice versa.   For   ( J ) = 1   means 

x    «a  modulo p has solutions   x0   and  p-x0 e GF(p) .    But  x    = 2^ 

for some integer   i ,  since 2 is primitve.    Therefore   (2^)2 = (22)' = 4i x a 

modulo p - i. e.. a   is a power of 4.    Note that 2 primitive implies 

(p) = -l   since   (2) = 1   =>    2 = 4» = 228   or   22-1 = i.    2s-l   odd 

divides   p-1   and 2 not primitive.    We also need** and use 

( p H p ) = (      )   for   a   and  b   prime to  p . 

Theorem I1:  For   p  a prime where 2 has multiplicative order   p-1 , 

there exist   ( ^-j-   . p)   cyclic quaternary codes 

a.a')   if   ( 3) = .! i da 3 

b.b')   if   ( 3) = -H , d ^   4 

c)   if   (p ) = +1   and   (^ ) = +1 d a:   5 

■ 

Proof: 

a)     (*)-.| 

p = 8n + 3 

Here   (       ) = -1 .    So by the multiplication formula   ( "3 ) = 1 
P 

(p
4)=-I,    (-/)=.! 

♦See Appendix for properties of   ( a ) 
P 

♦♦Formula 1 in Appendix . 
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.4   2-4 2-4 The polynomial   ga(x) = c0 + c x    + c* x  ' * + c      x + .  .   . 

has highest degree   (p-1)   and next highest power   m ■ p-4 .    Lemma 

2 gives us that   d £ p - (p-4+ 1) ■ 3 . 

a')   p = 8n + 5 

Here   (  p1 ) » 1   «o   ( +
p

3 ) = -1 .    ( -p
2 ) = -1 .    (   p4 ) = 1 

ga(x) » c0 + ex + c4 x4 + .   .   . 

This polynomial again satisfies Lemma 2. 

Choose 

b) (; ) = i 

-4 
Case 1)   p = 8n + 3 .    C *p  )• "1 •< "p  >■-*.("* »•♦I •(*?)• -I 

Choose   ha(x) = c0 + ex  + e4 x^  + .  . . 

Highest degree have is   (p-2)   and next highest is at most   (p-5).   So 

Lemma 3 yields   d 2 4 . 

b')   P = 8n + 5      (   p1   ) = 1 .   (   p2 ) « -1 .   ( ^ ) = 1 .  ( "p
4 ) = 1 .  (   p5  ) =   ? 

Choose   ha(x) = c0 + c x2  + c4 x2*4 .  .  . 

Lemma 3 again applies and   d  2 4 . 

c)   If   (       ) = + 1 ,  Lemma 3 yields   d   a   5 . 

We note here that   (       ) = -1   for ease b since we have   (       ) = -1 . 

We note that we need a detailed version of lemmas 2 and 3 plus 

new values of   ( * )   to get sharper estimates on the bound. 

V.    Encoding 

Corresponding to the desired   ga(x)   or   ha(x)   we choose the 

polynomial   f(x)   over   k   whose roots are the appropriate powers oi   ß -- 

ß   a primitive pth root of unity.    The powers chosen are of course the 

exponents of   x   in   ga(x)   or   ha(x).    We then generate the codes by 
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associating the appropriate difference equation with  f(x)   subject to 
( Ey- )   initial conditions in   K . 

VI.   Examples 
Ex.  1      p = 5 

Here we have a single error correcting (3-5) cyclic quaternary 

code.   This (3, 5) code is also obtained by Golay4 in a different manner. 

Here  p s 5 (modulo 8) and   ( "g3 ) = -1 ,  so we choose, as in case 
*'.   ga(x) = c0  + ex + c* x4 ,   c0 €   K,   c €   L = GF(24) .   Choose   y 

a generator of the multiplicative group   L*   of   L -- i.e.,    y15 a   1 -- 

say   Y  satisfies   y4 + Y + 1 = 0.   Let  /J . y3  then  0  is a primitive 
5th root of unity.    Let   f(x) = (x + l)(x +/S)(x +ß4) 
= (x + l)(x2 + 0 +04) x + ^5, = (x + 1)(x2 + 0 +04) x + i),   Now 

ß+ß4€   K . ß +04 = ylO   say and   y10 + y5 + 1 = 0 .   So 
f(x) = x3 + y5 x2 + y5 x + 1 

Consider the associated difference equation 

yn + 3 +Y5yn + 2 
+Y5yn + 1+yn = o 

Any three initial values in   K   will generate sequences of period 5.    This 
(3. 5) code will correct one error by the general theorem.    It is 

optimum as a computation will verify that it is closely packed. 

Ex.  2    The (6-11) c.q.  code: 

1.    Since   ( ^   ) = -1 ,  We are in case b. 

3 4 
ha(x) =  Co + ex   + c4 x4   + c4    x5   ♦ c4   x9 ♦ c4    x3 

Here   m = 5,  so by Lemma 3,  the number of roots of   h(x)   in   Z   is at 
most 6, so   d   a 11 - 6 = 5 . 

Putting it in terms of quadratic residues 

(n  J-1' <n  ) = -'. (u  ) = (*) = -! 
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Generaligation;   Let   K = GF(pm)  be the Galois field of  pm   elements. 

Consider the group codes of  Vn(K)  where  p  and  n  are relatively 

prime for   (p, n) ■ 1.   Each   (k, n)   group code A corresponds to a set 

of polynomials indexed by a set of constants   (c0,  c., c:  , c^  ,  . .  . Of     «j 

where   r   is the number of irreducible factors over   K  of   (xn + 1)/(1  ♦ x); 

c    e   K  and  cl e   L, the smallest field over   K   containing the rfi1 roots 

of unity. *   To any group code A is assigned a subgroup  G   of the direct 

product of   K with   r   copies of  L . 

If   m = 2 ,  then   r(n) s   2  for any   p  and we have a set of non- 

trivial cyclic codes obtainable by setting some of the   b ••#«    This is 

also the case if  m   (n - 1).    Error correcting bounds are formulated 

then in number-theoretic terms analogous to the 2Z case.    If   m   and 

n-1   are relatively prime,  we obtain the cyclic codes corresponding 

to the   p   letter case and the general lower bound is the Zierler- 

Gorenstein one.   Improvement on the bound may come from examina- 

tion of the coefficients of the polynomials themselves. 

For   n  and   pm   for which   r(n) = I, we may use the procedure 

outlined in 3), and obtain pseudo-cyclic variations. 

♦As before,  we choose   ß   a primitive nth root of unity.    Then to each 

code word   c e  A   we associate the polynomial   g(x, ß, c0, c:   ,   ...  CJ 
o 

such that   g{ßl) = a-i . 
r-1 
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Algebraic Appendix* 

1.   The Legendre symbol   (      ) 

Def.:   If  p   is a prime, we say that   a ^ 0   is a quadratic residue of 

p   (symbolically   ( * ) = +1 )   if the equation   x2 = a   modulo p has 
2 2 solutions in the field of   p   elements.    Clearly since   XQ*" = (p-x0) 

n   1 a 
there are   *-y-    quadratic residues of   p.    We put   (     ) = -I   if  a 

is not a quadratic residue. 

The following properties of the Legende symbol are well known. 

1.    ( a ) ( b ) = ( ab )   for   a   and   b   prime to   p 

2.    ( * ) = 1   if  p 5   +   1   Modulo 8 

()=-l   if  p5.±3   Modulo 8 

3.    (   ;)=(-!) 
^ 

4.    Law of Quadratic Reciprocity 

( P ) = -(** )   if   p   and   q   are both of the from   4k - 1 

/ ^ ) = ( H )   all other cases, 
^ q P 

♦Le Veque,   Topics in Number Theory,   Vol.   1,   Chapter 5, 
Addis on-Wesley (1956). 
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